Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.048
Filtrar
1.
West J Emerg Med ; 25(2): 275-281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38596930

RESUMO

Space travel has transformed in the past several years. Given the burgeoning market for space tourism, in-flight medical emergencies are likely to be expected. Ultrasound is one of the few diagnostic and therapeutic modalities available for astronauts in space. However, while point-of-care ultrasound (POCUS) is available, there is no current standard of training for astronaut preparation. We suggest an organized and structured methodology by which astronauts should best prepare for space with the medical equipment available on board. As technology continues to evolve, the assistance of other artificial intelligence and augmented reality systems are likely to facilitate training and dynamic real-time needs during space emergencies. Summary: As space tourism continues to evolve, an organized methodology for POCUS use is advised to best prepare astronauts for space.


Assuntos
Medicina Aeroespacial , Voo Espacial , Humanos , Medicina Aeroespacial/métodos , Inteligência Artificial , Emergências , Voo Espacial/educação , Astronautas/educação
2.
Front Public Health ; 12: 1333222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584916

RESUMO

Purpose: Exposure to radiation is a health concern within and beyond the Earth's atmosphere for aircrew and astronauts in their respective austere environments. The biological effects of radiation exposure from a multiomics standpoint are relatively unexplored and stand to shed light on tailored monitoring and treatment for those in these career fields. To establish a reference variable for genetic damage, biological age seems to be closely associated with the effect of radiation. Following a genetic-based study, this study explores the epigenetic landscape of radiation exposure along with its associative effects on aging processes. Methods: We imported the results of the genetics-based study that was a secondary analysis of five publicly available datasets (noted as Data1). The overlap of these genes with new data involving methylation data from two datasets (noted as Data2) following similar secondary analysis procedures is the basis of this study. We performed the standard statistical analysis on these datasets along with supervised and unsupervised learning to create preranked gene lists used for functional analysis in Ingenuity Pathway Analysis (IPA). Results: There were 664 genes of interest from Data1 and 577 genes from Data2. There were 40 statistically significant methylation probes within 500 base pairs of the gene's transcription start site and 10 probes within 100 base pairs, which are discussed in depth. IPA yielded 21 significant pathways involving metabolism, cellular development, cell death, and diseases. Compared to gold standards for gestational age, we observed relatively low error and standard deviation using newly identified biomarkers. Conclusion: We have identified 17 methylated genes that exhibited particular interest and potential in future studies. This study suggests that there are common trends in oxidative stress, cell development, and metabolism that indicate an association between aging processes and the effects of ionizing radiation exposure.


Assuntos
Astronautas , Exposição à Radiação , Humanos , Atmosfera , Exposição à Radiação/efeitos adversos , Estresse Oxidativo , Envelhecimento/genética
3.
Sensors (Basel) ; 24(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544032

RESUMO

In the era of expanding manned space missions, understanding the biomechanical impacts of zero gravity on human movement is pivotal. This study introduces a novel and cost-effective framework that demonstrates the application of Microsoft's Azure Kinect body tracking technology as a motion input generator for subsequent OpenSim simulations in weightlessness. Testing rotations, locomotion, coordination, and martial arts movements, we validate the results' realism under the constraints of angular and linear momentum conservation. While complex, full-body coordination tasks face limitations in a zero gravity environment, our findings suggest possible approaches to device-free exercise routines for astronauts and reveal insights into the feasibility of hand-to-hand combat in space. However, some challenges remain in distinguishing zero gravity effects in the simulations from discrepancies in the captured motion input or forward dynamics calculations, making a comprehensive validation difficult. The paper concludes by highlighting the framework's practical potential for the future of space mission planning and related research endeavors, while also providing recommendations for further refinement.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Movimento , Astronautas , Locomoção , Exercício Físico
4.
Neurology ; 102(7): e209224, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38478846

RESUMO

BACKGROUND AND OBJECTIVES: Few anecdotal cases and 1 small retrospective study during short-duration space missions suggest that headache may occur early in flight, as part of the space motion syndrome. Whether headaches may also occur at later stages of space flights is unknown. We aimed to prospectively characterize the incidence, timing, clinical features, and management of space headaches during long-duration flights. METHODS: We prospectively evaluated the occurrence, characteristics, and evolution of space headaches and the effects of treatment and countermeasures during long-haul flights with onboard questionnaires and correlated them with prevailing temperature, pressure, and ambient O2 and CO2 levels, measured within the International Space Station. In addition, we analyzed retrospective headache data from a different astronaut cohort. Headache data were reported using descriptive statistics and correlation data with intraindividual logistic regression models. Astronauts were included through (inter)national aerospace organizations. RESULTS: In the prospective study, 22/24 (91.7%) astronauts (mean ± SD age: 46.6 ± 6.5 years, 95.8% male) experienced ≥1 episode of headache during a total of 3,596 space days. A total of 378 episodes were reported (median 9; range 1-128) with detailed information on 189. Phenotypically, 170/189 (89.9%) episodes were tension-type headache (TTH) and 19/189 (10.1%) were migraine. Episodes in the first week differed from those in later periods in terms of phenotype (migraine 12/51 [23.5%] vs 7/138 [5.1%]; TTH 39/51 [86.5%] vs 131/138 [94.9%]; overall p = 0.0002) and accompanying symptoms: nausea: 17.6% vs 6.9%, p = 0.05; vomiting: 9.8% vs 0.7%, p = 0.005; nasal congestion: 52.9% vs 29.7%, p = 0.004; facial edema: 41.2% vs 1.4%, p < 0.001; and duration (p = 0.001). Severity and treatments were similar: acute antiheadache medication: 55.6%; other medication: 22.4%; and alternative treatments: 41.1%. Headache occurrence was not associated with temperature or ambient pressure/levels of O2 and CO2 (all p > 0.05). In the retrospective study, 23/42 (54.8%) astronauts (43.5 ± 7.2 years, 90.5% male) reported experiencing ≥1 headache episode during mission. Nasal congestion was the most common (8/33; 24.2%) accompanying symptom. Seventeen of 42 astronauts have been previously described. DISCUSSION: Astronauts during space flights frequently experience headaches. These most often have characteristics of TTHs but sometimes have migrainous features, particularly during the first week of flight in astronauts without a history of recurrent headaches before or after the space flight.


Assuntos
Transtornos de Enxaqueca , Voo Espacial , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Astronautas , Estudos Retrospectivos , Dióxido de Carbono , Estudos Prospectivos , Cefaleia/epidemiologia , Cefaleia/etiologia
5.
Aerosp Med Hum Perform ; 95(4): 223-225, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486320

RESUMO

BACKGROUND: In the early days of the National Aeronautics and Space Administration (NASA), medicine in support of the astronauts was led by military experts from the U.S. Air Force as well as experts from the U.S. Navy and U.S. Army. In the early years, a physician with expertise in aerospace medicine was assigned to the Space Task Group and then to NASA. One of these individuals was Dr. Stanley White, a U.S. Air Force physician. To capture more of the early space medicine pioneers, a contract was established between the National Library of Medicine and the principal investigator at the University of Cincinnati to conduct a series of interviews with these early pioneers. An interview with Dr. White took place in his home while he was in hospice care. This audiotaped interview and other written and oral histories within NASA archives and the literature were reviewed to support this work. A series of questions were prepared for the interaction with Dr. White. These questions provided further clarification on his background and contribution. Responses to questions elicited open-ended discussion. The conversation provided a historical summary of Dr. White's contribution to NASA as one of its first flight surgeons.Doarn CR. An interview with Dr. Stanley White, one of NASA's first flight surgeons. Aerosp Med Hum Perform. 2024; 95(4):223-225.


Assuntos
Medicina Aeroespacial , Voo Espacial , Cirurgiões , Humanos , Masculino , Astronautas , Estados Unidos , United States National Aeronautics and Space Administration
6.
Aerosp Med Hum Perform ; 95(4): 187-193, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38486318

RESUMO

INTRODUCTION: The classical P300 brain potential method was used to assess the cognitive capacity during training of manual docking in space. The aim of the study was to enhance the safety of this operation during a mission.METHODS: To examine this, N = 8 cosmonauts had to perform the manually controlled docking task simultaneously with an acoustic monitoring task. The P300 component was evoked by the acoustic stimuli of the secondary task. The docking task had to be executed at three difficulty levels: low (station not turning); medium (station turning around one axis); and difficult (station turning around three axes). In the secondary task, subjects had to discriminate between a low and a high tone, which occurred with a probability of 90% and 10%, respectively. Subjects had to count the high tones. After the 10th high tone, they had to inspect the power supply by giving an oral command.RESULTS: A methodology for event-related potentials was successfully demonstrated under space conditions. The P300 amplitude was largest and the latency shortest during the medium difficult task.DISCUSSION: The results suggest that P300 can be recorded during the complex manual docking task in space and could be used to assess individual available cognitive capacity of cosmonauts during a space mission.Bubeev JA, Johannes B, Kotrovska TI, Schastlivtseva D, Bronnikov S, Hoermann H-J, Gaillard AWK. Free cognitive capacity assessed by the P300 method during manual docking training in space. Aerosp Med Hum Perform. 2024; 95(4):187-193.


Assuntos
Astronautas , Potenciais Evocados P300 , Humanos , Estimulação Acústica , Potenciais Evocados P300/fisiologia , Encéfalo , Cafeína , Cognição/fisiologia
7.
Sci Rep ; 14(1): 4196, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378866

RESUMO

Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.


Assuntos
Voo Espacial , Humanos , Astronautas , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Marcha
8.
Ageing Res Rev ; 95: 102227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346506

RESUMO

Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.


Assuntos
Voo Espacial , Humanos , Astronautas , Envelhecimento , Terapia por Exercício , Instabilidade Genômica
9.
Sci Rep ; 14(1): 7334, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409284

RESUMO

Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.


Assuntos
Radiação Cósmica , Marte , Voo Espacial , Camundongos , Masculino , Feminino , Animais , Meio Ambiente Extraterreno , Caracteres Sexuais , Radiação Ionizante , Astronautas , Radiação Cósmica/efeitos adversos , Imunidade
10.
Aerosp Med Hum Perform ; 95(2): 123-131, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38263098

RESUMO

INTRODUCTION: Human access to space is expanding rapidly in the commercial environment, with various private companies offering commercial flights to spaceflight participants (SFPs). SFPs are more likely than career astronauts to have medical conditions novel to spaceflight and may not have undergone as rigorous a medical screening process as that used for career astronauts, representing new and unstudied risks in the spaceflight environment. We report participation of a subject with recent median sternotomy for aortic valve replacement and atrial septal defect closure in centrifuge-simulated dynamic phases of orbital and suborbital spaceflight.CASE REPORT: A 40-yr-old man with a history of congenital bicuspid aortic valve and atrial septal defect with successful repair 8 mo prior participated in an ongoing human centrifuge research study. The subject had the opportunity to participate in up to five centrifuge runs in an 8-h period, with profiles simulating commercial spaceflight. Maximum exposures included +4.0 Gz, +4.5 Gx, 6.1 G resultant, and maximum onset rate < 0.5 Gz · s-1 and +1 Gx · s-1. Physiological data acquisition included hemodynamics, electrocardiogram, neurovestibular exams, and postrun questionnaires covering motion sickness, disorientation, and similar. The subject tolerated the physiological aspects of hypergravity well, noting progressive sternal pain with increasing +Gx, ultimately leading him to opt out of the final profile.DISCUSSION: Postcardiothoracic surgery risks to SFPs are largely unknown, especially within 12 mo of a significant surgical procedure. This case provides an approach for risk stratification, preparticipation evaluation, and medical management of a postsurgical patient with significant cardiac history in spaceflight and analog environments.Fernandez WL, Blue RS, Harrison MF, Powers W, Shah R, Auñón-Chancellor S. Centrifuge-simulated spaceflight after aortic valve replacement and atrial septal defect repair. Aerosp Med Hum Perform. 2024; 95(2):123-131.


Assuntos
Comunicação Interatrial , Hipergravidade , Voo Espacial , Humanos , Masculino , Valva Aórtica , Astronautas
11.
Aerosp Med Hum Perform ; 95(2): 69-78, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38263106

RESUMO

INTRODUCTION: Following a transition from microgravity to a gravity-rich environment (e.g., Earth, Moon, or Mars), astronauts experience sensorimotor impairment, primarily from a reinterpretation of vestibular cues, which can impact their ability to perform mission-critical tasks. To enable future exploration-class missions, the development of lightweight, space-conscious assessments for astronauts transitioning between gravity environments without expert assistance is needed.METHODS: We examined differences in performance during a two-dimensional (2D) hand-eye multidirectional tapping task, implemented in augmented reality in subjects (N = 20) with and without the presence of a vestibular-dominated sensorimotor impairment paradigm: the binaural bipolar application of a pseudorandom galvanic vestibular stimulation (GVS) signal. Metrics associated with both the impairment paradigm and task performance were assessed.RESULTS: Medial-lateral sway during balance on an anterior-posterior sway-referenced platform with eyes closed was most affected by GVS (effect size: 1.2), in addition to anterior-posterior sway (effect size: 0.63) and the vestibular index (effect size: 0.65). During the augmented reality task, an increase in time to completion (effect size: 0.63), number of misses (effect size: 0.52), and head linear accelerations (effect size: 0.30) were found in the presence of the selected GVS waveform.DISCUSSION: Findings indicate that this multidirectional tapping task may detect emergent vestibular-dominated impairment (near landing day performance) in astronauts. Decrements in speed and accuracy indicate this impairment may hinder crews' ability to acquire known target locations while in a static standing posture. The ability to track these decrements can support mission operations decisions.Allred AR, Weiss H, Clark TK, Stirling L. An augmented reality hand-eye sensorimotor impairment assessment for spaceflight operations. Aerosp Med Hum Perform. 2024; 95(2):69-78.


Assuntos
Realidade Aumentada , Voo Espacial , Ausência de Peso , Humanos , Mãos , Astronautas
12.
Life Sci Space Res (Amst) ; 40: 158-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245341

RESUMO

Space foods closely associate with the performance and mental health of astronauts. Over the years, a range of manufacturing technologies have been explored and advancements in food 3D printing can provide answers to certain existing challenges and revolutionize the way foods are prepared for space exploration missions. Apart from the nutrition and satiety perspective, product shelf-life, variety, personalization, and the need for customized diets are critical considerations. In such long-duration human-crewed space missions, under microgravity conditions and exposure to space, psychological factors heavily affect food consumption patterns. Therefore, there has been a surge in research funding for developing products and methods that offer safe, nutritionally balanced, and delightful food options. 3D food printing could be a creative solution for such requirements. While multiple challenges must be addressed, the technology promises waste minimization and the scope for on-site on-demand food preparation. This article begins with fundamental concepts of this subject, provides a timeline of the advancements in the field, and details the futuristic prospects of the technology for long-duration space missions.


Assuntos
Alimentos , Voo Espacial , Humanos , Dieta , Astronautas , Impressão Tridimensional
13.
Life Sci Space Res (Amst) ; 40: 166-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245342

RESUMO

Future space travel to the earth's moon or the planet Mars will likely lead to the selection of experienced International Space Station (ISS) or lunar crew persons for subsequent lunar or mars missions. Major concerns for space travel are galactic cosmic ray (GCR) risks of cancer and circulatory diseases. However large uncertainties in risk prediction occur due to the quantitative and qualitative differences in heavy ion microscopic energy deposition leading to differences in biological effects compared to low LET radiation. In addition, there are sparse radiobiology data and absence of epidemiology data for heavy ions and other high LET radiation. Non-targeted effects (NTEs) are found in radiobiology studies to increase the biological effectiveness of high LET radiation at low dose for cancer related endpoints. In this paper the most recent version of the NASA Space Cancer Risk model (NSCR-2022) is used to predict mission risks while considering NTEs in solid cancer risk predictions. I discuss predictions of space radiation risks of cancer and circulatory disease mortality for US Whites and US Asian-Pacific Islander (API) populations for 6-month ISS, 80-day lunar missions, and combined ISS-lunar mission. Model predictions suggest NTE increase cancer risks by about ∼2.3 fold over a model that ignores NTEs. US API are predicted to have a lower cancer risks of about 30% compared to US Whites. Cancer risks are slightly less than additive for multiple missions, which is due to the decease of risk with age of exposure and the increased competition with background risks as radiation risks increase. The inclusion of circulatory risks increases mortality estimates about 25% and 37% for females and males, respectively in the model ignoring NTEs, and 20% and 30% when NTEs are assumed to modify solid cancer risk. The predictions made here for combined ISS and lunar missions suggest risks are within risk limit recommendations by the National Council on Radiation Protection and Measurements (NCRP) for such missions.


Assuntos
Radiação Cósmica , Neoplasias Induzidas por Radiação , Voo Espacial , Masculino , Feminino , Humanos , Astronautas , Lua , Radiação Cósmica/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Doses de Radiação
14.
Life Sci Space Res (Amst) ; 40: 151-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245340

RESUMO

Astronauts are known to exhibit a variety of immunological alterations during spaceflight including changes in leukocyte distribution and plasma cytokine concentrations, a reduction in T-cell function, and subclinical reactivation of latent herpesviruses. These alterations are most likely due to mission-associated stressors including circadian misalignment, microgravity, isolation, altered nutrition, and increased exposure to cosmic radiation. Some of these stressors may also occur in terrestrial situations. This study sought to determine if crewmembers performing winterover deployment at Palmer Station, Antarctica, displayed similar immune alterations. The larger goal was to validate a ground analog suitable for the evaluation of countermeasures designed to protect astronauts during future deep space missions. For this pilot study, plasma, saliva, hair, and health surveys were collected from Palmer Station, Antarctica, winterover participants at baseline, and at five winterover timepoints. Twenty-six subjects consented to participate over the course of two seasons. Initial sample processing was performed at Palmer, and eventually stabilized samples were returned to the Johnson Space Center for analysis. A white blood cell differential was performed (real time) using a fingerstick blood sample to determine alterations in basic leukocyte subsets throughout the winterover. Plasma and saliva samples were analyzed for 30 and 13 cytokines, respectively. Saliva was analyzed for cortisol concentration and three latent herpesviruses (DNA by qPCR), EBV, HSV1, and VZV. Voluntary surveys related to general health and adverse clinical events were distributed to participants. It is noteworthy that due to logistical constraints caused by COVID-19, the baseline samples for each season were collected in Punta Arenas, Chile, after long international travel and during isolation. Therefore, the Palmer pre-mission samples may not reflect a true normal 'baseline'. Minimal alterations were observed in leukocyte distribution during winterover. The mean percentage of monocyte concentration elevated at one timepoint. Plasma G-CSF, IL1RA, MCP-1, MIP-1ß, TNFα, and VEGF were decreased during at least one winterover timepoint, whereas RANTES was significantly increased. No statistically significant changes were observed in mean saliva cytokine concentrations. Salivary cortisol was substantially elevated throughout the entire winterover compared to baseline. Compared to shedding levels observed in healthy controls (23%), the percentage of participants who shed EBV was higher throughout all winterover timepoints (52-60%). Five subjects shed HSV1 during at least one timepoint throughout the season compared to no subjects shedding during pre-deployment. Finally, VZV reactivation, common in astronauts but exceptionally rare in ground-based stress analogs, was observed in one subject during pre-deployment and a different subject at WO2 and WO3. These pilot data, somewhat influenced by the COVID-19 pandemic, do suggest that participants at Palmer Station undergo immunological alterations similar to, but likely in reduced magnitude, as those observed in astronauts. We suggest that winterover at Palmer Station may be a suitable test analog for spaceflight biomedical countermeasures designed to mitigate clinical risks for deep space missions.


Assuntos
Hidrocortisona , Voo Espacial , Humanos , Hidrocortisona/análise , Regiões Antárticas , Pandemias , Projetos Piloto , Astronautas , Citocinas
15.
Life Sci Space Res (Amst) ; 40: 89-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245353

RESUMO

In view of the critical role the gut microbiome plays in human health, it has become clear that astronauts' gut microbiota composition changes after spending time in space. Astronauts are exposed to several risks in space, including a protracted period of microgravity, radiation, and mechanical unloading of the body. Several deleterious effects of such an environment are reported, including orthostatic intolerance, cardiovascular endothelial dysfunction, cellular and molecular changes, and changes in the composition of the gut microbiome. Herein, the correlation between the gut microbiome and cardiovascular disease in a microgravity environment is evaluated. Additionally, the relationship between orthostatic hypotension, cardiac shrinkage and arrhythmias during spaceflight, and cellular alterations during spaceflight is reviewed. Given its impact on human health in general, modifying the gut microbiota may significantly promote astronaut health and performance. This is merited, given the prospect of augmented human activities in future space missions.


Assuntos
Microbioma Gastrointestinal , Voo Espacial , Ausência de Peso , Humanos , Ausência de Peso/efeitos adversos , Astronautas , Coração
16.
Life Sci Space Res (Amst) ; 40: 72-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245350

RESUMO

Missions to the Earth's moon are of scientific and societal interest, however pose the problem of risks of late effects for returning crew persons, most importantly cancer and circulatory diseases. In this paper, we discuss NSCR-2022 model risk estimates for lunar missions for US racial and ethnic groups comparing never-smokers (NS) to US averages for each group and sex. We show that differences within groups between men and women are reduced for NS compared to the average population. Race and ethnic group dependent cancer and circulatory disease risks are reduced by 10% to 40% for NS with the largest decrease for Whites. Circulatory disease risks are changed by less than 10% for NS and in several cases modestly increased due to increased lifespan for NS. Asian-Pacific Islanders (API) and Hispanics NS are at lower risk compared to Whites and Blacks. Differences between groups are narrowed for NS compared to predictions for average populations, however disparities remain especially for Blacks and to a lesser extent Whites compared to API or Hispanic NS groups.


Assuntos
Astronautas , Doenças Cardiovasculares , Etnicidade , Neoplasias , Grupos Raciais , Exposição à Radiação , Feminino , Humanos , Masculino , Lua , Neoplasias/epidemiologia , Fumantes , Estados Unidos , Medição de Risco , Exposição à Radiação/efeitos adversos , Fatores Sexuais , Doenças Cardiovasculares/epidemiologia
17.
Radiat Res ; 201(2): 93-103, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171489

RESUMO

The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.


Assuntos
Radiação Cósmica , Mésons , Proteção Radiológica , Voo Espacial , Humanos , Astronave , Radiação Cósmica/efeitos adversos , Proteção Radiológica/métodos , Astronautas , Cognição , Doses de Radiação
18.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256089

RESUMO

Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Exposição à Radiação , Lesões por Radiação , Humanos , Astronautas , Microambiente Celular , DNA
19.
Sci Rep ; 14(1): 1215, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216637

RESUMO

Cardiovascular deconditioning and altered baroreflexes predispose returning astronauts to Orthostatic Intolerance. We assessed 7 astronauts (1 female) before and following long-duration spaceflight (146 ± 43 days) with minimal upright posture prior to testing. We applied lower body negative pressure (LBNP) of up to - 30 mmHg to supine astronauts instrumented for continual synchronous measurements of cardiovascular variables, and intermittent imaging the Portal Vein (PV) and Inferior Vena Cava (IVC). During supine rest without LBNP, postflight elevations to total peripheral resistance (TPR; 15.8 ± 4.6 vs. 20.8 ± 7.1 mmHg min/l, p < 0.05) and reductions in stroke volume (SV; 104.4 ± 16.7 vs. 87.4 ± 11.5 ml, p < 0.05) were unaccompanied by changes to heart rate (HR) or estimated central venous pressure (CVP). Small increases to systolic blood pressure (SBP) and diastolic blood pressure (DBP) were not statistically significant. Autoregressive moving average modelling (ARMA) during LBNP did not identify differences to either arterial (DBP → TPR and SBP → HR) or cardiopulmonary (CVP → TPR) baroreflexes consistent with intact cardiovascular control. On the other hand, IVC and PV diameter-CVP relationships during LBNP revealed smaller diameter for a given CVP postflight consistent with altered postflight venous wall dynamics.


Assuntos
Astronautas , Barorreflexo , Humanos , Feminino , Barorreflexo/fisiologia , Pressão Negativa da Região Corporal Inferior , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Artérias
20.
Z Med Phys ; 34(1): 92-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932191

RESUMO

An illustrative sample mission of a Mars swing-by mission lasting one calendar year was chosen to highlight the application of European risk assessment software to cancer (all solid cancer plus leukaemia) risks from radiation exposures in space quantified with organ dose equivalent rates from model calculations based on the quantity Radiation Attributed Decrease of Survival (RADS). The relevant dose equivalent to the colon for radiation exposures from this Mars swing-by mission were found to vary between 198 and 482 mSv. These doses depend on sex and the two other factors investigated here of: solar activity phase (maximum or minimum); and the choice of space radiation quality factor used in the calculations of dose equivalent. Such doses received at typical astronaut ages around 40 years old will result in: the probability of surviving until retirement age (65 years) being reduced by a range from 0.38% (95%CI: 0.29; 0.49) to 1.29% (95%CI: 1.06; 1.56); and the probability of surviving cancer free until retirement age being reduced by a range from 0.78% (95%CI: 0.59; 0.99) to 2.63% (95%CI: 2.16; 3.18). As expected from the features of the models applied to quantify the general dosimetric and radiation epidemiology parameters, the cancer incidence risks in terms of surviving cancer free, are higher than the cancer mortality risks in terms of surviving, the risks for females are higher than for males, and the risks at solar minimum are higher than at solar maximum.


Assuntos
Neoplasias , Proteção Radiológica , Voo Espacial , Masculino , Feminino , Humanos , Idoso , Adulto , Astronautas , Doses de Radiação , Medição de Risco , Neoplasias/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...